Volume : 4, Issue : 4, MAR 2020

AN EFFICIENT APPROACH FOR ANALYSING THE TWITTER POSTS USING CLASSIFICATION TECHNIQUES

Manikandan V, Rajkumar S

Abstract

Twitter may be a stimulating platform for the dissemination of stories. The real-time nature and brevity of the tweets are conducive to sharing of knowledge related to important events as they unfold. But, one of the simplest challenges is to hunt out the tweets that characterize as news within the ocean of tweets. The paper propose a totally unique method for detecting and tracking breaking news from Twitter in real-time. Filtering the stream of incoming tweets to urge obviate junk tweets employing a text classification algorithm and also compare the performance of varied supervised SVM text classification algorithms for this task. After classification then cluster similar tweets, so that, tweets within the same cluster relate to an equivalent real-life event and should be termed as a breaking news. Finally, rank the news employing a dynamic scoring system which also allows us to trace the news over a period of some time.

Keywords

SVM, Twitter.

Article : Download PDF

Cite This Article

Article No : 3

Number of Downloads : 0

References

  1. Burnap, P., Rana, O., Williams, M., Housley, W., Edwards, A., Morgan, J., Sloan, L.,Conejero, J., 2015. COSMOS: towards an integrated and scalable service for analysing social media on demand. Int. J. Parallel Emergent Distrib. Proceedings of the IEEE Computer Vision and Pattern Recognition.
  2. Campbell, H., Engelbrecht, I., 2018. The Baboon Spider Atlas – using citizen science and the ‘fear factor’ to map baboon spider (Araneae: Theraphosidae) diversity and distributions in Southern Africa. International Journal of Computer Applications, Vol. 120, no. 15, 2015.
  3. Carter, S., Iterkamp, W., Tsagkias, M., 2016. Microblog language identification: overcoming the limitations of short, unedited and idiomatic text. Lang. Resour. Eval. 47,195215. Proceedings of the IEEE mag. on Computer Vision and Pattern Recognition
  4. Venter, O., Sanderson, E.W., Magrach, A., Allan, J.R., Beher, J., Jones, K.R., Possingham,H.P., Laurance, W.F., Wood, P., Fekete, B.M., Levy, M.A., Watson, J.E.M.., Proceedings of the IEEE mag. on global implications for biodiversity conservation. Nat. Commun. 7, 12558
  5. Cong, L., Wu, B., Morrison, A.M., Shu, H., Wang, M., 2016. Analysis of wildlife tourism experiences with endangered species: an exploratory study of encounters with giant pandas in Chengdu, China. International Journal of Science, Engineering and Technology Research (IJSETR), vol 4, no. 4, pp. 816-820, 2015.
  6. Crampton, J.W., Graham, M., Poorthuis, A., Shelton, T., Stephens, M., Wilson, M.W., Zook, M., 2016. Beyond the geotag: situating ‘big data’ and leveraging the potential of the geoitb. In 2016 International Journal on Advanced Computer Science Applications and Technologies (ACSAT), pp. 379-384. IEEE, 2016.
  7. van Zanten, B.T., Van Berkel, D.B., Meentemeyer, R.K., Smith, J.W., Tieskens, K.F.,Verburg, P.H., 2016. Continental-scale quantification of landscape values using social media data. Proc. Natl. Acad. Sci. 113, 12974–12979. 2015. International Journal of Emerging Research in Management &Technology, Vol 4, no. 11, pp. 110-118, 2015.
  8. Croitoru, A., Wayant, N., Crooks, A., Radzikowski, J., Stefanidis, A., 2016. Linking cyber and physical spaces through community detection and clustering in social media feeds. Comput. Environ. Urban. Syst. 53, 47–64. Proceedings of the fourth International Journal on weblogs and social media. 2017.
  9. Gliozzo, G., Pettorelli, N., Muki Haklay, M.., Using crowdsourced imagery to detect cultural ecosystem services: a case study in South Wales, UK. Ecol. Soc. 21, art6.Journal paper on Visual Computing on 2016.
  10. Huifang Ma, MeihuiziJia, Di Zhang, Xianghong Lin, “Combining tag correlation and user social relation for microblog recommendation”.IEEE Paper on Computer Vision and Pattern Recognition(2016)
  11. Grabowicz, P.A., Ramasco, J.J., Moro, E., Pujol, J.M., Eguiluz, V.M., 2017. Social features of online networks: the strength of intermediary ties in online social media. PLoS One 7, e29358. IEEE Paper on Advances in Neural Information Processing Systems (NIPS)
  12. Greer, K., Day, K., McCutcheon, S., 2017. Efficacy and perception of trail use enforcement in an urban natural reserve in San Diego, California. J. Outdoor Recreat. Tour. 18,56–64. 2016 European paper on Computer Vision (ECCV).
  13. Hampton, S., Strasser, C., Tewksbury, J., Gram, W., Budden, A., Batcheller, A., Duke, C.,Porter, J.H., 2018. Big data and the future of ecology. Front. Ecol. Environ. 11, 156–162. in Proc. 2013 IEEE paper on Applications of Computer Vision.
  14. Hausmann, A., Toivonen, T., Heikinheimo, V., Tenkanen, H., Slotow, R., Di Minin, E., 2017. Social media reveal that charismatic species are not the main attractor of ecotourists to sub-Saharan protected areas. Sci. Rep. 7, 763.2015 IEEE paper on Computer Science. Springer Verlag, Berlin, Germany.
  15. Hausmann, A., Toivonen, T., Slotow, R., Tenkanen, H., Moilanen, A., Heikinheimo, V., Di Minin, E., 2018. Social media data can be used to understand tourists' preferences for nature-based experiences in protected areas. Conserv. Lett. 11. In Proceedings of the ACL 2014 IEEE paper on Language Technologies and Computational Social Science
  16. Thelwall, M., 2009. Social network sites. Users and uses. In: Zelkowitz, M. (Ed.), Advances in Computers. Elsevier, pp. 19–73. International Journal of Linguistic Annotation (LAW IX), pages 112–123
  17. Tieskens, K.F., Schulp, C.J.E., Levers, C., Lieskovský, J., Kuemmerle, T., Plieninger, T.,Verburg, P.H..., 2017 In Proceedings IEEE paper of Characterizing European cultural landscapes: accounting for structure, management intensity and value of agricultural and forest landscapes.Land Use Policy 62, 29–39.
  18. Van Berkel, D.B., Tabrizian, P., Dorning, M.A., Smart, L., Newcomb, D., Mehaffey, M.,Neale, A., Meentemeyer, R.K.., 2018 In Proceedings IEEE paper of Quantifying the visual-sensory landscape qualities that contribute to cultural ecosystem services using social media and LiDAR. Ecosyst. Serv. 31, 326–335.