Volume : 2, Issue : 2, JAN 2018


Mosiori, Cliff Orori


Hybrid perovskite solar cells have been developing at a staggering pace in just a few years with the first perovskite cell reported in 2009 managing about 4% PCE. By 2015, perovskite cells had been certified as having more than 20-percent efficiency. However, a number of questions on methyl ammonium lead trihalide (CH3NH3PbI3) absorbers remain unanswered. This includes its varying PCE values obtained through rapid reverse and forward scans that yield anomalous hysterical efficiencies. Already, NREL certified PCE values of CH3NH3PbI3 solar cell is classified as “unreliable” and not be justifiable for patenting. Solar efficiency basically relies on the behavior of I-V characteristic curve. Such revelations require consistent experimental investigations to explain how electron or charge mobility traverses through CH3NH3PbI3 thin films through consistent reproducible experimental techniques like the solvent-solvent extraction method. Photoluminescence measurements; Atomic Force Microscopy, cross-sectional scanning transmission electron microscopy and Time-of-Flight spectrometry are important paramount investigations that can reveal amazing intrinsic relations to electron mobility and transport mechanisms especially those carried with temperature dependent longitudinal and Hall resistances measurements using the standard four-terminal method.


Photoluminescence; Time-of-Flight spectrometry, perovskite solar cell, PCE efficiencies.

Article : Download PDF

Cite This Article

Article No : 3

Number of Downloads : 95


1. Abate, A.; Saliba, M.; Hollman, J.; Stranks, D.; Wojciechowski, K,; Avolio, R.; Grancini, G.; Petrozza, A.; and Snaith, J. (2014). "Supramolecular Halogen Bond Passivation of Organic–Inorganic Halide Perovskite Solar Cells". Nano Letters 14 (6): 3247–3254. 2. Agarwal, S. and Nair, P. (2014). "Performance optimization for Perovskite based solar cells". Photovoltaic Specialist Conference (PVSC), IEEE 40th: 1515–1518. 3. Agarwal, S. and Pradeep, R. (2015). "Device engineering of perovskite solar cells to achieve near ideal efficiency". Applied Physics Letters 107 (12): 123901. 4. Ahn, N., Son, D. Y., Jang, I. H., Kang, S. M., Choi, M., & Park, N. G. (2015). Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. Journal of the American Chemical Society, 137(27), 8696-8699. 5. Ball, M.; Lee, M.; Hey, A.; and Snaith, J. (2013). "Low-temperature processed meso-superstructured to thin-film perovskite solar cells". Energy & Environmental Science 6 (6): 1739. 6. Burschka, J.; Pellet, N.; Moon, S.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, K. and Grätzel, M. (2013). "Sequential deposition as a route to high-performance perovskite-sensitized solar cells". Nature 499 (7458): 316–319. 7. Carlos, F. and Ignacio G. (2008) Revisiting the Effects of the Molecular Structure in the Kinetics of Electron transfer of Quinones: Kinetic Differences in Structural Isomers; J. Mex. Chem. Soc. 52(1), 11-18ISSN 1870-249X
8. Chen, H. W., Sakai, N., Ikegami, M., & Miyasaka, T. (2014). Emergence of hysteresis and transient ferroelectric response in organo-lead halide perovskite solar cells. The Journal of Physical Chemistry Letters, 6(1), 164-169.
9. Collavini, S., Völker, S. and Delgado, L. (2015). "Understanding the Outstanding Power Conversion Efficiency of Perovskite-Based Solar Cells". Angewandte Chemie International 54 (34): 9757–9759.
10. D’Innocenzo, V.; Grancini, G.; Alcocer, J.; Kandada, S.; Stranks, D.; Lee, M.; Lanzani, G. and Snaith, J. (2014). "Excitons versus free charges in organo-lead tri-halide perovskites". Nature Communications 5. 11. Docampo, Pablo; Ball, James M.; Darwich, Mariam; Eperon, Giles E. and Snaith, J. (2013). "Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates". Nature Communications 4. 12. Dualeh, A., Moehl, T., Tétreault, N., Teuscher, J., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS Nano, 8(1), 362-373. 13. Eames, C.; Frost, M.; Barnes, F.; Regan, C.; Walsh, A. and Islam, S. (2015). "Ionic transport in hybrid lead iodide perovskite solar cells". Nature Communications 6: 7497. 14. Eperon, E.; Burlakov, M.; Docampo, P.; Goriely, A. and Snaith, J. (2014). "Morphological Control for High Performance, Solution-Processed Planar Hetero-junction Perovskite Solar Cells". Advanced Functional Materials 24 (1): 151–157. 15. Eperon, E.; Stranks, D.; Menelaou, C.; Johnston, B.; Herz, M. and Snaith, J. (2014). "Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells". Energy & Environmental Science 7 (3): 982. 16. Filipič, M.; Löper, P.; Niesen, B.; Wolf, S.; Krč, J.; Ballif, C. and Topič, M. (2015). "CH3NH3PbI3 perovskite/silicon tandem solar cells: characterization based optical simulations". Optics Express 23 (7) 17. Frost, J. M., Butler, K. T., & Walsh, A. (2014). Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. Apl Materials, 2(8), 081506. 18. Frost, J. M., Butler, K. T., Brivio, F., Hendon, C. H., Van Schilfgaarde, M., & Walsh, A. (2014). Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano letters, 14(5), 2584-2590.
19. Heo, J. H., Song, D. H., Han, H. J., Kim, S. Y., Kim, J. H., Kim, D., .. & Im, S. H. (2015). Planar CH3NH3PbI3
perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate. Advanced Materials, 27(22), 3424-3430. 20. Giles, R., Simon E. J., Ralf G. N., Timo A. P., Jamie M. F., Petra J. C. and Alison B. W. (2016) Can slow-moving ions explain hysteresis in the current–voltage curves of perovskite solar cells? Energy Environ. Sci., 9, 1476-1485. 21. Gonzalez-Pedro, V.; Juarez-Perez, J.; Arsyad, W.; Barea, M.; Fabregat-Santiago, F.; Mora-Sero, I. and Bisquert, J. (2014). "General Working Principles of CH3NH3PbX3 Perovskite Solar Cells". Nano Letters 14 (2): 888–893. 22. Habisreutinger, S. N., Leijtens, T., Eperon, G. E., Stranks, S. D., Nicholas, R. J., & Snaith, H. J. (2014). Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano letters, 14(10), 5561-5568. 23. Hadlington, S. (2012). "Perovskite coat gives hybrid solar cells a boost", RSC Chemistry world. 24. Hao, F., Stoumpos, C. C., Liu, Z., Chang, R. P., & Kanatzidis, M. G. (2014). Controllable Perovskite Crystallization at a Gas–Solid Interface for Hole Conductor-Free Solar Cells with Steady Power Conversion Efficiency over 10%. Journal of the American Chemical Society, 136(46), 16411-16419. 25. Haruyama, J., Sodeyama, K., Han, L., & Tateyama, Y. (2014). Termination dependence of tetragonal CH3NH3PbI3 surfaces for perovskite solar cells. The Journal of Physical Chemistry Letters, 5(16), 2903-2909. 26. Jeon, N. J., Lee, H. G., Kim, Y. C., Seo, J., Noh, J. H., Lee, J., & Seok, S. I. (2014). O-Methoxy substituents in spiro-OMeTAD for efficient inorganic–organic hybrid perovskite solar cells. Journal of the American Chemical Society, 136(22), 7837-7840. 27. Jeon, N.; Noh, H.; Kim, C.; Yang, S.; Ryu, S. and Seok, I. (2014). "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells". Nature Materials 13 (9): 897–903. 28. Jeong-Hyeok I.; Lee, C.; Lee, J.; Park, S. and Park, N. (2011). 6.5% efficient perovskite quantum-dot-sensitized solar cell". Nanoscale 3 (10): 4088–93. 29. Juarez-Perez, E. J., Sanchez, R. S., Badia, L., Garcia-Belmonte, G., Kang, Y. S., Mora-Sero, I., & Bisquert, J. (2014). Photoinduced giant dielectric constant in lead halide perovskite solar cells. The Journal of Physical Chemistry Letters, 5(13), 2390-2394.
30. Kasha, M. (2012). Energy Transfer Mechanisms and the Molecular Exciton Model for Molecular Aggregates1, 2. Radiation research, 178(2), AV27-AV34.
31. Kim, H. S., & Park, N. G. (2014). Parameters affecting I–V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer. The Journal of Physical Chemistry Letters, 5(17), 2927-2934.
32. Kim, H.; Lee, C.; Im, J.; Lee, K.; Moehl, T.; Marchioro, A.; Moon, S.; Humphry-Baker, R.; Yum, J.; Moser, E.; Grätzel, M. and Park, N. (2012). "Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%". Scientific Reports 2. 33. Kojima, A.; Teshima, K.; Shirai, Y. and Miyasaka, T, (2009). "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells". Journal of the American Chemical Society 131 (17): 6050–6051. 34. Kutes, Y., Ye, L., Zhou, Y., Pang, S., Huey, B. D., & Padture, N. P. (2014). Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films. The journal of physical chemistry letters, 5(19), 3335-3339. 35. Lang, L.; Yang, J.; Liu, H.; Xiang, J. and Gong, G. (2014). First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites. Physics Letters A 378 (3): 290–293. 36. Lansbergen, G. P., Ono, Y., & Fujiwara, A. (2012). Donor-based single electron pumps with tunable donor binding energy. Nano letters, 12(2), 763-768. 37. Lee, M.; Teuscher, J.; Miyasaka, T.; Murakami, N. and Snaith, J. (2012). "Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites". Science 338 (6107): 643–647. 38. Leguy, A. M., Hu, Y., Campoy-Quiles, M., Alonso, M. I., Weber, O. J., Azarhoosh, P., ... & Docampo, P. (2015). Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chemistry of Materials, 27(9), 3397-3407. 39. Liu, M.; Johnston, B. and Snaith, J. (2013). "Efficient planar heterojunction perovskite solar cells by vapour deposition". Nature 501 (7467): 395–398. 40. Marinova, N., Tress, W., Humphry-Baker, R., Dar, M. I., Bojinov, V., Zakeeruddin, S. M., & Grätzel, M. (2015). Light harvesting and charge recombination in CH3NH3PbI3 perovskite solar cells studied by hole transport layer thickness variation. ACS nano, 9(4), 4200-4209.
41. Meehan, C. (2014). "Getting the lead out of Perovskite Solar Cells". Solar Reviews. 42. Memming, R., and Bahnemann, D. (2015). Semiconductor electrochemistry. John Wiley & Sons. 43. Minemoto, T. and Murata, M., (2014). "Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells". Journal of Applied Physics 116 (5): 054505. 44. Mosconi, E.; Amat, A.; Nazeeruddin, K.; Grätzel, M. and Angelis, F. (2013). "First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications". The Journal of Physical Chemistry C 117 (27): 13902–13913. 45. Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.; Neukirch, J.; Gupta, G.; Crochet, J.; Chhowalla, M. and Tretiak, S., (2015). "High-efficiency solution-processed perovskite solar cells with millimeter-scale grains". Science 347 (6221): 522–525. ISSN 0036-8075. 46. Noel, K.; Stranks, D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.; Sadhanala, A.; Eperon, E.; Pathak, K.; Johnston, B.; Petrozza, A.; Herz, M. and Snaith, J. (2014). "Lead-free organic–inorganic tin halide perovskites for photovoltaic applications"; Energy & Environmental Science 7 (9): 3061. 47. Noel, N. K., Abate, A., Stranks, S. D., Parrott, E. S., Burlakov, V. M., Goriely, A., & Snaith, H. J. (2014). Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites. ACS nano, 8(10), 9815-9821. 48. Noh, H.; Im, H.; Heo, H.; Mandal, N. and Seok, I. (2013). "Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells". Nano Letters 13 (4). 49.O’Regan, B. C., Barnes, P. R., Li, X., Law, C., Palomares, E., & Marin-Beloqui, J. M. (2015). Optoelectronic studies of methylammonium lead iodide perovskite solar cells with mesoporous TiO2: separation of electronic and chemical charge storage, understanding two recombination lifetimes, and the evolution of band offsets during J–V hysteresis. Journal of the American Chemical Society, 137(15), 5087-5099. 50. Oga, H., Saeki, A., Ogomi, Y., Hayase, S., & Seki, S. (2014). Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps. Journal of the American Chemical Society, 136(39), 13818-13825.
51. Pekola, J. P., Saira, O. P., Maisi, V. F., Kemppinen, A., Möttönen, M., Pashkin, Y. A., & Averin, D. V. (2013). Single-electron current sources: Toward a refined definition of the ampere. Reviews of Modern Physics, 85(4), 1421.
52. Roche, B., Riwar, R. P., Voisin, B., Dupont-Ferrier, E., Wacquez, R., Vinet, M., ... & Jehl, X. (2013). A two-atom electron pump. Nature communications, 4, 1581.
53. Roy, S., & Bagchi, B. (1994). Time dependent solution of generalized Zusman model of outersphere electron transfer reactions: Applications to various experimental situations. The Journal of chemical physics, 100(12), 8802-8816. 54. Saliba, M.; Tan, W.; Sai, H.; Moore, T.; Scott, T.; Zhang, W.; Estroff, A.; Wiesner, U. and Snaith, J. (2014). "Influence of Thermal Processing Protocol upon the Crystallization and Photovoltaic Performance of Organic–Inorganic Lead Trihalide Perovskites". The Journal of Physical Chemistry C 118 (30): 17171–17177. 55. Sanchez, R. S., Gonzalez-Pedro, V., Lee, J. W., Park, N. G., Kang, Y. S., Mora-Sero, I., & Bisquert, J. (2014). Slow dynamic processes in lead halide perovskite solar cells. Characteristic times and hysteresis. Journal of Physical Chemistry Letters, 5(13), 2357-2363. 56. Sha, E.; Ren, X.; Chen, L.; and Choy, H. (2015), "The efficiency limit of CH3NH3PbI3 perovskite solar cells". Appl. Phys. Lett. 106 (22): 221104. 57. Shao, Y., Xiao, Z., Bi, C., Yuan, Y., & Huang, J. (2014). Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature communications, 5. 58. Sivaram, V.; Stranks, D. & Snaith, J. (2015). "Outshining Silicon". Scientific American: 44–46. 59. Snaith, J. (2013). "Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells". The Journal of Physical Chemistry Letters 4 (21): 3623–3630. 60. Snaith, J.; Abate, A.; Ball, M.; Eperon, E.; Leijtens, T.; Noel, K.; Wang, T.; Wojciechowski, K.; Zhang, W. and Zhang, W. (2014). "Anomalous Hysteresis in Perovskite Solar Cells". The Journal of Physical Chemistry Letters 5 (9): 1511–1515. 61. Stranks, D.; Eperon, E.; Grancini, G.; Menelaou, C.; Alcocer, M.; Leijtens, T.; Herz, M. and Petrozza, A. (2013). "Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber". Science 342 (6156): 341–344.
62. Sun, X.; Asadpour, R.; Nie, W.; Mohite, A. and Alam, A. (2015). "A Physics-Based Analytical Model for Perovskite
Solar Cells". IEEE Journal of Photovoltaics 5 (5): 1389–1394. ISSN 2156-3381. 63. Tan, W.; Moore, T.; Saliba, M.; Sai, H.; Estroff, A.; Hanrath, T.; Snaith, J. and Wiesner, U, (2014). "Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells". ACS Nano 8 (5): 4730–4739. 64. Tress, W., Marinova, N., Moehl, T., Zakeeruddin, S. M., Nazeeruddin, M. K., & Grätzel, M. (2015). Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy & Environmental Science, 8(3), 995-1004. 65. Umari, P.; Mosconi, E. and Angelis, D. (2014). "Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications". Scientific Reports 4. 66. Unger, L.; Hoke, T.; Bailie, D.; Nguyen, H.; Bowring, R.; Heumuller, T.; Christoforo, G. and McGehee, D. (2014). "Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells". Energy & Environmental Science 7 (11): 3690–3698. 67. Wang, U. (2014). "Perovskite Offers Shot at Cheaper Solar Energy". Wall Street Journal. 68. Wei, J., Zhao, Y., Li, H., Li, G., Pan, J., Xu, D., ... & Yu, D. (2014). Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells. The journal of physical chemistry letters, 5(21), 3937-3945. 69. Wilcox, K. (2014). "Solar Researchers Find Promise in Tin Perovskite Line". Civil Engineering. 70. Wilczek, F. (2014). Majorana and condensed matter physics. arXiv preprint arXiv:1404.0637. 71. Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q; Yuan, Y.; Wang, C.; Gao, Y. and Huang, J. (2014). "Efficient, High Yield Perovskite Photovoltaic Devices Grown by Interdiffusion of Solution-Processed Precursor Stacking Layers". Energy & Environmental Science 7 (8): 2619. 72. Xie, F. X., Zhang, D., Su, H., Ren, X., Wong, K. S., Grätzel, M., & Choy, W. C. (2015). Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells. ACS nano, 9(1), 639-646.
73. Yang, B.; Dyck, O.; Poplawsky, J.; Keum, J.; Puretzky, A.; Sanjib, D.; Ivanov, I.; Rouleau, C.; Duscher, G.; Geohegan, D. and Xiao, K. (2015). "Perovskite Solar Cells with Near 100% Internal Quantum Efficiency Based on Large Single Crystalline Grains and Bulk Heterojunctions". J. Am. Chem. Soc. 137 (29): 9210–9213.
74. You, J.; Hong, Z.; Yang, M.; Chen, Q; Cai, M; Song, T; Chen, C.; Lu, S. and Liu, Y. (2014). "Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility". ACS Nano 8 (2): 1674–1680. ISSN 1936-0851.
75. Zhao, Y., & Zhu, K. (2014). CH3NH3PbCl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. The Journal of Physical Chemistry C, 118(18), 9412-9418. 76. Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T..; Duan, H.; Hong, Z.; You, J.; Liu, Y. and Yang, Y. (2014). "Interface engineering of highly efficient perovskite solar cells". Science 345 (6196): 542–546. 77. Zhou, Y.; Yang, M.; Wu, W.; Vasiliev, L.; Zhu, K. and Padture, P. (2015). "Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells". J. Mater. Chem. A 3 (15): 8178–8184. 78. Zuo, L., Gu, Z., Ye, T., Fu, W., Wu, G., Li, H., & Chen, H. (2015). Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. Journal of the American Chemical Society, 137(7), 2674-2679.